rbnet.autoencoder.AutoencoderTransition
- class rbnet.autoencoder.AutoencoderTransition(terminal_encoder, terminal_decoder, non_terminal_encoder, non_terminal_decoder, left_idx=0, right_idx=0, *args, **kwargs)[source]
- Bases: - Transition- An autoencoder transition combining a deterministic binary non-terminal and unary terminal transition. The general - inside_marginals()simplify for autoencoders. First, we operate on point estimates (delta distributions), so we assume the following form for the inside distribution- where - and - define the location of the delta distributions and - and - their norm. - For binary non-terminals, we then get - and for unary terminals - We now recover the form assumed above by fixing the value of - and - given by a deterministic encoder, while the transition probabilities are provided by the stochastic forward model, i.e., the decoder - Public Data Attributes: - Inherited from- Module- dump_patches- call_super_init- T_destination- training- Public Methods: - __init__(terminal_encoder, terminal_decoder, ...)- inside_marginals(location, inside_chart, ...)- Compute the marginals over inside probabilities - Inherited from- Transition- __init__(*args, **kwargs)- inside_marginals(location, inside_chart, ...)- Compute the marginals over inside probabilities - Inherited from- Module- __init__(*args, **kwargs)- Initialize internal Module state, shared by both nn.Module and ScriptModule. - forward(*input)- Define the computation performed at every call. - register_buffer(name, tensor[, persistent])- Add a buffer to the module. - register_parameter(name, param)- Add a parameter to the module. - add_module(name, module)- Add a child module to the current module. - register_module(name, module)- Alias for - add_module().- get_submodule(target)- Return the submodule given by - targetif it exists, otherwise throw an error.- set_submodule(target, module[, strict])- Set the submodule given by - targetif it exists, otherwise throw an error.- get_parameter(target)- Return the parameter given by - targetif it exists, otherwise throw an error.- get_buffer(target)- Return the buffer given by - targetif it exists, otherwise throw an error.- get_extra_state()- Return any extra state to include in the module's state_dict. - set_extra_state(state)- Set extra state contained in the loaded state_dict. - apply(fn)- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- cuda([device])- Move all model parameters and buffers to the GPU. - ipu([device])- Move all model parameters and buffers to the IPU. - xpu([device])- Move all model parameters and buffers to the XPU. - mtia([device])- Move all model parameters and buffers to the MTIA. - cpu()- Move all model parameters and buffers to the CPU. - type(dst_type)- Casts all parameters and buffers to - dst_type.- float()- Casts all floating point parameters and buffers to - floatdatatype.- double()- Casts all floating point parameters and buffers to - doubledatatype.- half()- Casts all floating point parameters and buffers to - halfdatatype.- bfloat16()- Casts all floating point parameters and buffers to - bfloat16datatype.- to_empty(*, device[, recurse])- Move the parameters and buffers to the specified device without copying storage. - to(*args, **kwargs)- Move and/or cast the parameters and buffers. - register_full_backward_pre_hook(hook[, prepend])- Register a backward pre-hook on the module. - register_backward_hook(hook)- Register a backward hook on the module. - register_full_backward_hook(hook[, prepend])- Register a backward hook on the module. - register_forward_pre_hook(hook, *[, ...])- Register a forward pre-hook on the module. - register_forward_hook(hook, *[, prepend, ...])- Register a forward hook on the module. - __call__(*args, **kwargs)- Call self as a function. - __getstate__()- Helper for pickle. - __setstate__(state)- __getattr__(name)- __setattr__(name, value)- Implement setattr(self, name, value). - __delattr__(name)- Implement delattr(self, name). - register_state_dict_post_hook(hook)- Register a post-hook for the - state_dict()method.- register_state_dict_pre_hook(hook)- Register a pre-hook for the - state_dict()method.- state_dict(*args[, destination, prefix, ...])- Return a dictionary containing references to the whole state of the module. - register_load_state_dict_pre_hook(hook)- Register a pre-hook to be run before module's - load_state_dict()is called.- register_load_state_dict_post_hook(hook)- Register a post-hook to be run after module's - load_state_dict()is called.- load_state_dict(state_dict[, strict, assign])- Copy parameters and buffers from - state_dictinto this module and its descendants.- parameters([recurse])- Return an iterator over module parameters. - named_parameters([prefix, recurse, ...])- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - buffers([recurse])- Return an iterator over module buffers. - named_buffers([prefix, recurse, ...])- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - children()- Return an iterator over immediate children modules. - named_children()- Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - modules()- Return an iterator over all modules in the network. - named_modules([memo, prefix, remove_duplicate])- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - train([mode])- Set the module in training mode. - eval()- Set the module in evaluation mode. - requires_grad_([requires_grad])- Change if autograd should record operations on parameters in this module. - zero_grad([set_to_none])- Reset gradients of all model parameters. - share_memory()- See - torch.Tensor.share_memory_().- extra_repr()- Return the extra representation of the module. - __repr__()- Return repr(self). - __dir__()- Default dir() implementation. - compile(*args, **kwargs)- Compile this Module's forward using - torch.compile().- Private Data Attributes: - _abc_impl- Inherited from- Transition- _abc_impl- Inherited from- ABC- _abc_impl- Inherited from- Module- _version- This allows better BC support for - load_state_dict().- _compiled_call_impl- _parameters- _buffers- _non_persistent_buffers_set- _backward_pre_hooks- _backward_hooks- _is_full_backward_hook- _forward_hooks- _forward_hooks_with_kwargs- _forward_hooks_always_called- _forward_pre_hooks- _forward_pre_hooks_with_kwargs- _state_dict_hooks- _load_state_dict_pre_hooks- _state_dict_pre_hooks- _load_state_dict_post_hooks- _modules- Private Methods: - Inherited from- Module- _apply(fn[, recurse])- _get_backward_hooks()- Return the backward hooks for use in the call function. - _get_backward_pre_hooks()- _maybe_warn_non_full_backward_hook(inputs, ...)- _slow_forward(*input, **kwargs)- _wrapped_call_impl(*args, **kwargs)- _call_impl(*args, **kwargs)- _register_state_dict_hook(hook)- Register a post-hook for the - state_dict()method.- _save_to_state_dict(destination, prefix, ...)- Save module state to the destination dictionary. - _register_load_state_dict_pre_hook(hook[, ...])- See - register_load_state_dict_pre_hook()for details.- _load_from_state_dict(state_dict, prefix, ...)- Copy parameters and buffers from - state_dictinto only this module, but not its descendants.- _named_members(get_members_fn[, prefix, ...])- Help yield various names + members of modules. - _get_name()- _replicate_for_data_parallel()
 - inside_marginals(location, inside_chart, terminal_chart, value=None, **kwargs)[source]
- Compute the marginals over inside probabilities - for all possible splitting points (also see here). In particular, - locationspecifies the variable’s location in the parse chart (the indices- and - in the equation above), from which the possible splitting points follow ( - splitting points - for transitions of arity - ). The marginals should always be returned in an array or iterable where the first dimension corresponds to all possible combinations of splitting points, even for transitions with arity - (i.e. for - , where there are no splits, the first dimension should be of size 1 and for - all possible combinations of the - splitting points should be listed in a flattened form in the first dimension). Additional dimensions, may be used to represent the dependency of the marginal on the variable - (e.g. for a discrete variable, the second dimension may list the marginal for each possible value - can take; and for a continuous variable, the marginal may be represented by a set of parameters). - The output of this function is typically handled by a custom implementation of - Cell.inside_mixture().- Parameters:
- location – location of the variable for which to compute the inside marginals 
- inside_chart – a lookup chart with inside probabilities for other variables 
- terminal_chart – a lookup chart with values of the terminal variables 
 
- Returns:
- array-like or iterable with inside probabilities