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Abstract

Signalling systems of various species (humans and non-human
animals) as well as our world both exhibit discrete and continu-
ous properties. However, continuous meanings are not always
expressed using continuous forms but instead frequently cat-
egorised into discrete symbols. While discrete symbols are
ubiquitous in communication, the emergence of discretisation
from a continuous form space is not well understood. We in-
vestigate the emergence of discrete symbols by simulating the
learning process of two agents that acquire a shared signalling
system. The task is formalised as a reinforcement learning
problem in continuous form and meaning space. We identify
two central causes for the emergence of discretisation: 1) sub-
optimal signalling conventions and 2) a topological mismatch
between form and meaning space. A long version of this paper
has been accepted for publication in Cognition (International
Journal of Cognitive Science).
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Introduction

Utterances of humans and various non-human animals exhibit
both discrete and continuous properties (Wilbrecht & Not-
tebohm, 2003; Janik & Slater, 1997; Rendell & Whitehead,
2001; Kuhl, 2004; Quattara et al., 2009). They are composed
of one or more smaller acoustical units (e.g. a sentence com-
posed of words and words composed of phonemes), each hav-
ing additional continuous features (e.g. loudness, pitch, dura-
tion and timbre). The discrete components can be used to
denote various things and circumstances in the world, such
as objects or the presence of particular predators (Ouattara
et al., 2009). However, discrete symbols' can only approxi-
mately represent continuous information, such as shades of a
colour or gradual changes in emotion. The continuous com-
ponent, on the other hand, allows for a nuanced representa-
tion of gradual aspects, such as the emotional state of the
sender (Scherer, 2003; Dimos et al., 2015). In contrast, it does
not provide absolute certainty about discrete aspects, such as
whether or not a predator is approaching.

Interestingly, we frequently observe discretisation in parts
of the world that are inherently continuous. In human lan-
guage, for instance, the colour spectrum is mapped to dis-
tinct colour words (Steels & Belpaeme, 2005; Roberson et

LSymbols, as the term is used in this paper, may have both a dis-
crete and a continuous character. To denote physical quantities, sig-
nals or objects that carry information and may be used in communi-
cation, we speak of forms, in the sense the term is used in semiotics
for the physical appearance of a sign (Chandler, 2017).

al., 2004; Sandhofer & Smith, 1999). Discrete entities are
omnipresent in communication (words, characters, symbols
etc.) and we are used to employing them to describe con-
tinuous aspects of the world: “Bricks are primarily red, with
a hint of orange and a little bit of grey.” Composing discrete
units might therefore seem like an obvious approach for com-
municating continuous meanings. From an evolutionary per-
spective, however, it seems much more natural and effective
to use continuous properties of the form to communicate con-
tinuous aspects of the world. Such as when communicating
just how different something is by varying the way we pro-
nounce the word “very” when saying: “It’s veeerrry differ-
ent.”

So why are continuous meanings not always communi-
cated using continuous forms?

The goal of this paper is to understand what causes a single
connected region in continuous meaning space to be split up
and expressed using multiple discrete symbols. To investi-
gate such an early evolution of communication, potentially
even prior to the development of complex phonological and
syntactic structures, we simulate the learning process of two
agents (any human, non-human animal, machine or any other
entity that engages in an act of communication) that acquire
a shared signalling system. We employ a setup that has been
used in various other related works, with the important differ-
ence that we do not assume the existence of discrete symbols
or categories at any point and all steps operate in continuous
space. This allows for the development of entirely continuous
signalling conventions, based on which we then empirically
identify the emergence of discretisation. To the best of our
knowledge, our work represents the first attempt to explain
the emergence of discrete symbols in regions with continu-
ous meanings based on simulations from first principles.

Symbols

When it comes to the difference between discretisation and
continuity, a central problem in the description of real-world
signalling systems is that, in a way, they are discrete and con-
tinuous at the same time. Whether a particular system can
be considered discrete or continuous usually depends on the
level of description. Should the dynamics within a digital
computer be considered discrete (because it operates on 0s
and 1s) or continuous (because the Os and 1s are effectively



represented by continuous voltages)? Should the words of a
language be considered discrete entities (because they can be
listed, one by one, in a dictionary) or continuous (because
each word can be pronounced in infinitely many different
ways)? We believe that mistaking a difference in the level
of description for the fundamental question of whether some-
thing is “truly” discrete or continuous is one of the most com-
mon reasons for confusion. The notion of symbols we put
forward in this paper therefore comprises both aspects and
can be defined as follows:

A symbol is a connected region in form space, in which
all forms can be effectively used in communication and
that is separated from other symbols.

This definition has two major advantages that we rely on in
our evaluation of the experiments: 1) it allows for empirically
detecting symbols in communication data with a continuous
form space by identifying a surrounding margin of unused
forms and 2) it is compatible with continuous (iconic)? map-
pings of the region in form space that is covered by a specific
symbol. Moreover, this definition of symbols integrates well
with the notion of signs in semiotics, which represent a link
between forms and meanings that cannot be detached from
their concrete usage in communication (Chandler, 2017).

Related Work

A synthetic approach to language evolution has already been
used in communication games (Wittgenstein, 1953; Steels,
1997; Nolfi & Mirolli, 2010) to study various properties of
language and language evolution via robotic experiments and
computer simulations of communicating agents (Oliphant &
Batali, 1997; Cangelosi & Parisi, 2002; Christiansen & Kirby,
2003). Existing research has mainly focused on one of three
distinct tasks: 1) Syntax and Semantics: How do the rules
for combining symbols (syntax) can be learned and how do
the resulting symbol combinations acquire meaning (seman-
tics) (Steels, 1997; De Jong, 1999; Nowak & Krakauer, 1999;
Steels & Belpaeme, 2005; Oudeyer & Kaplan, 2007; Bleys
et al., 2009; Spranger, 2016). These approaches conceptually
stay within the purely discrete realm. 2) Vocalisation: Learn-
ing a mapping from discrete symbols to a continuous sig-
nal that is transmitted between the agents (imitation games,
De Boer, 2000; Oudeyer, 2005; Moulin-Frier & Oudeyer,
2012; Moulin-Frier et al., 2014; Murakami et al., 2015). Here
the existence of discrete symbols is presupposed. 3) Emo-
tional Speech Synthesis: Expression of emotions in speech
synthesis by appropriately shaping the continuous represen-
tation (e.g. pitch and duration) of the discrete symbols, again,
assuming their existence (Oudeyer, 2003; Schroder, 2001).
The closest precursor to our work is the one by Zuidema
& Westermann (2003). While working in an entirely dis-
crete setup, they introduce a continuous topology in form and

2Continuous mappings are iconic in that the form and the mean-
ing space match in terms of their topology and a continuous variation
of the form corresponds to an analogous variation in meaning (also
cf. De Boer & Verhoef, 2012; Chandler, 2017).
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Figure 1: Communication cycle from A (sender) to B (re-
ceiver): a meaning my € M, corresponding to A’s perception
of the world, is sampled from the meaning distribution pg,;
A chooses a form f4 € F to communicate my according to
its sender policy n(f)); this form is transmitted as fp € F to
B via the transmission distribution p«; B interprets the form
/B to have the meaning mp € M according to its receiver pol-
icy m@; finally, the success of communication is evaluated
by comparing m4 and mp and both agents receive a reward

according to the reward function p.

meaning space by means of a noisy transmission distribution
and a reward/value function. Technically, our sender policy,
receiver policy, transmission distribution, and reward func-
tion (see below) are the continuous equivalent of their S, R,
U, and V matrices.

Our experiments generalise their setup in that we 1) work
in an entirely continuous setting, 2) only use the reward feed-
back of single communication acts for learning (they present
preliminary results for this scenario with “limited feedback™),
and 3) investigate the effect of different topologies, in partic-
ular, of a topological mismatch between form and meaning
space.

The interplay of continuous mappings and discretisation
in the case of a topological mismatch between the form and
meaning space was empirically investigated in humans by
Little et al. (2017). The case of a topological mismatch is also
discussed by De Boer (2012) and De Boer & Verhoef (2012).
They note that a continuous (iconic) mapping is not possible
in that case but restrict their considerations to the case where
the form space has a lower dimensionality than the meaning
space (1D versus 2D in their experiments).

Methods

We simulate communication games, in which two agents re-
peatedly engage in communication by exchanging forms and
receive feedback about the quality of their communication to
improve their policies. A complete communication cycle is
illustrated in Figure 1. We use a similar setup as in previ-
ous works (esp. Zuidema & Westermann, 2003; De Boer &
Verhoef, 2012), with the important difference that we gen-
eralise to the fully continuous setting. We perform several
experiments with different topologies of the form and mean-
ing space, showing that discrete symbols embedded into these
continuous spaces emerge as a result of the learning process.
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Figure 2: Learning progress in the 1D-1D-setting. Filled circles indicate form-meaning pairs for sending, open circles for
receiving; the colour indicates the reward (red: high; yellow: low); grey lines indicate the corresponding form-meaning pairs of
the other agent; heat maps show the expected reward r(f,m) estimated by the agent. A total of 400 out of 10000 communication

acts per iteration is shown.
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Figure 3: 1D-1D-setting with a one-dimensional world (blue)
and a one-dimensional form space (orange). (a): Optimal
mapping as in the final iteration in Figure 2. (b): Sub-optimal
mapping, where one end of the meaning space is mapped to
the “wrong” end of the form space, resulting in a fragmented
form space with a cut (dashed line). (¢): The correspond sub-
optimal result in the simulations; misunderstandings at the
cut (due to exploratory behaviour) appear as long grey lines.

In our model, forms are transmitted from the sender to the
receiver with additional Gaussian noise to better capture the
real-world conditions of communication. The communica-
tion success is measured by a reward function and after each
communication act, the resulting reward is observed by both
agents. The reward is maximal for identical meanings m,4 and
mp and decays with a Gaussian shape for increasing distance
|ma — mp|. The agents attempt to maximise the reward by
adapting their sender and receiver policies. However, each
agent only has access to their own form and meaning, not to
those of the other agent. This implies that each agent’s sender
and receiver policy are coupled, making them consistent for
each agent individually but not between agents.

Learning is performed using an iterative approach from re-
inforcement learning, called policy iteration (Sutton & Barto,
2018; Lagoudakis & Parr, 2003). In each iteration, the two
agents perform 5000 acts of communication in each direc-
tion. Each of these 10000 data points specifies the reward
p that was obtained at a point (f,m) in form-meaning space.
From these data, each agent estimates the expected reward us-
ing linear regression with Gaussian basis functions (Bishop,
2007; Hastie et al., 2008).

The policies are adjusted to choose forms and meanings
with a probability that is proportional to the expected reward.
The policies thus do not always choose the form and meaning
with the maximum expected reward but, to a lesser extent,
also explore sub-optimal choices. This explorative behaviour
is required to ensure robust convergence of the policies in
reinforcement learning (Sutton & Barto, 2018).

Results and Discussion

We conducted simulations in three different environments.
First, we used a simple 1D-1D-setting as illustrated in Fig-
ure 3 to illustrate the learning process and investigate its
properties, in particular, the influence of different condi-
tions of transmission noise and examples of sub-optimal sig-
nalling conventions with a fragmented form space. Second,
we investigated the scenario of modal worlds (Figure 4) and
showed that the modal structure is reflected in distinct sym-
bols. Third, we performed a simulation with a mismatch in
the topology of the form and meaning space (Figure 5), show-
ing that this leads to a discretisation in form space despite a
continuous meaning space.

Optimal vs. Sub-Optimal Signalling Conventions

Figure 2 shows a complete learning process in the 1D-1D-
setting, from the initial state with broad and unstructured poli-
cies to the final state with an optimal one-to-one mapping be-
tween forms and meanings. However, the policies did not
always converge to an optimal signalling convention: Fig-
ure 3(c) shows an example with a fragmented mapping. To
better understand the reasons for such a fragmentation we
performed an extensive statistical evaluation of the probabil-
ity of converging to the optimal signalling convention for dif-
ferent conditions of the transmission noise, which provided
two central insights.

First, the chances of converging to an optimal signalling
convention strongly depend on the amount of noise (variance
of the Gaussian) in the transmission distribution with more
noise leading to a more reliable convergence. This is in agree-
ment with the observations made by Zuidema & Westermann
(2003). Second, sub-optimal signalling conventions with a
fragmented form space are locally optimal and stable. They
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Figure 4: (a): Worlds that exhibit distinct modes (blue lines)
induce a discretisation in form space (orange), which has
to be cut (dashed line) in order to be mapped to the world.
(b): Results of the simulations, showing single communica-
tion acts and the expected reward, as in Figure 2, but in three
dimensions. Instead of a heat map, we show isosurfaces at
r(f,m) = 0.5 (high opacity) and r(f,m) = 0.05 (low opac-
ity). An interactive version of the figure is available in the
supplementary material.

are highly unlikely to change once being established.

These results constitute a pragmatic reason for the emer-
gence of discretisation in regions with continuous meaning,
which is due to locally optimal but globally sub-optimal sig-
nalling conventions. Even if an optimal continuous mapping
between forms and meanings exists, this optimal solution is
not guaranteed to be found.

Modal Worlds

In our second simulation, the environment consists of two
separate lines (Figure 4) that are embedded in a two-
dimensional meaning space. We generated meanings with
additional Gaussian noise, so that each one-dimensional line
effectively covers an extended region in the two-dimensional
meaning space. The form space was a single one-dimensional
line as before.

The agents reliably learned an optimal signalling conven-
tion with the form space being split in two parts, which were
mapped to the two different lines in meaning space, as shown
in Figure 4(b). In between the two parts in form space, a
gap of forms that were not used in optimal communication
emerged. The form space can thus be considered to com-
prise two distinct symbols, corresponding to the two separate
modes of the world, with each symbol exhibiting a continu-
ous (iconic) mapping of its internal form space to the meaning
space of the respective mode.

The fact that meanings from a continuous but modal world
can be effectively communicated using a discrete signalling
system was mathematically investigated by Feldman (2012)
and is empirically confirmed by our findings.

Additionally, our simulations demonstrate that discretisa-
tion in form space does not need to be assumed in this sce-
nario but instead emerges from a continuous form space as the
result of a learning process. Furthermore, the results demon-
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Figure 5: (a): Topological mismatch between a one-
dimensional world (blue) and a one-dimensional but circu-
lar form space (orange). Misunderstandings occur at the end
points of the meaning space, which are mapped close to the
same point in form space (inset). Creating a gap in form
space and avoiding symbols within that region reduces mis-
understandings. (b): Corresponding simulation results with
the form space wrapping around horizontally. To facilitate
learning, the agents continue exploring the gap region, which
results in misunderstandings with a low reward (long grey
lines).

strate that the learned signalling system exhibits both discrete
and continuous properties that allow to not only refer to the
separate modes but also represent more fine-grained differ-
ences within each of the modes. This is structurally similar to
how words in a language may be used to denote clearly dis-
tinct meanings, while intonation may supplement additional
information to communicate these meanings more precisely.

Topological Mismatch

In our third experiment, we employed a circular form space
and a bounded line as meaning space, as illustrated in Fig-
ure 5. This is the simplest case of a mismatch in the topology
of the form an meaning space, while both spaces are at the
same time inherently continuous.

In the optimal mapping learned by the agents, shown in
Figure 5(b), the form space is continuously mapped to the
meaning space, except at the boundaries of the meaning
space. At this point, two maximally different meanings are
mapped close to each other in form space. To avoid misun-
derstandings, a gap in form emerges, similar to the scenario
with two separate lines in meaning space. However, in the
present case the meaning space is entirely continuous and the
gap only emerges as a consequence of the topological mis-
match between form and meaning space.

This topological argument explains the emergence of dis-
cretisation on a fundamental and abstract level and it can
be expected that any signalling system is characteristically
shaped by the topology of the corresponding form and mean-
ing space.

In reality, the relevant topologies are of course much more
complex. For instance, the human vowel system has at least



three major dimensions (tongue position, tongue height, lip
roundedness) and several subordinate dimensions that are not
generally independent (Ladefoged & Maddieson, 1990). Be-
yond language, music has the capacity to convey emotions
and other complex states of mind (Juslin & Laukka, 2003).
The spaces of musical objects, such as tones, chords or in-
teracting polyphonic voices, have a highly complex topology.
For instance, the space of musical keys and triads alone has a
topology that can be alternatively described as a planar two-
dimensional Tonnetz (Euler, 1739; Riemann, 1896), a tube, or
a torus, depending on which properties of the tones are con-
sidered to be relevant (Cohn, 1997; Krumhansl, 1998; Chew,
2000; Lieck et al., 2020).

These are only two specific examples of non-trivial topolo-
gies that arise in the real world. There are many more modes
of communication, each with their own topological particu-
larities. It is therefore highly plausible that the topological
effects we observe in our experiments also play a role in real-
world communication.

Conclusion

We investigated the emergence of discrete symbols by simu-
lating the learning process of two agents that acquire a shared
signalling system. We empirically confirmed three causes for
discretisation: 1) convergence to sub-optimal signalling con-
ventions with a fragmented form space, 2) modal worlds, as
suggested by Feldman (2012), and 3) a topological mismatch
between form and meaning space, as conjectured by De Boer
& Verhoef (2012) and Zuidema & Westermann (2003).

We observe continuous mappings between forms and
meanings for parts of the spaces with a matching topology.
These relations are iconic in that the form and the meaning
space resemble each other in terms of the topology, so that a
continuous variation of the form corresponds to an analogous
variation in meaning (also cf. De Boer & Verhoef, 2012).

The joint treatment of discrete and continuous properties
based on a definition of discrete symbols in continuous form
and meaning spaces allows us to model the emergence of dis-
cretisation as well as the coexistence, coevolution and inter-
play of discrete and continuous properties in communication.
These aspects are not only relevant to human language but
also to other forms of communication, such as music and
communication in non-human animals.
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